
Recommendations Regarding Common
Analysis Format Infrastructure

D0 Data Format Working Group

October 4, 2004

DØ Note XXXX

Contents

1 Introduction 3
1.1 Processing Chain . 3
1.2 Use Cases . 3

2 Generation of CAF Files 4
2.1 Overview of tmb analyze . 4
2.2 Requirements . 5

3 Analysis Environment 5
3.1 Current Practice . 5
3.2 Requirements . 6
3.3 Interactive Analysis . 7

3.3.1 Working in a D0 Release 7
3.3.2 Working outside a D0 Release 8

3.4 Analysis Using the ROOT Infrastructure 8
3.5 Root Framework . 9

3.5.1 Event Class . 9
3.5.2 Root Packages . 10
3.5.3 Configuration Mechanism 11

3.6 SAM Interface . 11
3.7 Batch Framework . 11

1

3.8 Root Build System . 11

4 Documentation System 12

2

1 Introduction

The Report of the DØ Data Format Working Group [1] makes a number of
recommendations regarding the software infrastructure as it relates to the
proposed Common Analysis Format (CAF).

1.1 Processing Chain

The processing chain from raw data to CAF trees looks as follows:

• d0reco (produces thumbnails).

• Fixing of thumbnails (if required for a given reco release).

• Skimming of thumbnails.

• Generation of CAF trees.

• Skimming of CAF trees.

• User analysis of CAF trees (producing histograms, plots etc.)

Optionally, the the generation of CAF trees may already include further
skimming and the generation of more specialized output streams.

In general the event selection after the CAF tree generation is left to
physics groups or individuals. However, common tools will be provided to
do this in a coherent way and to generate any necessary metadata to store
these samples back into SAM if necessary.

1.2 Use Cases

The following are the most common use case concerning the processing chain.

Common CAF tree generation The standard version of the CAF tree
is produced centrally from the corresponding thumbnail skims. It is
assumed that these files are stored back into SAM to make them easily
available to the whole collaboration.

Extended CAF tree generation by user/group A group or user may
generate CAF trees with extended information which is not available
in the standard format. The same tools should be used for this as for
the normal CAF trees, to avoid a proliferation of incompatible trees.

3

Skimming of CAF trees by user/group A user or group applies a first
step of event selection for her analysis and skims the central CAF trees
further down. It should be possible to store it back into SAM, depend-
ing on the size of the resulting sample and how many people need to
access it.

Storing of CAF trees in SAM A user or group has a data sample that
will be accessed by other people. It should be stored back into SAM.

Accessing CAF trees from SAM for user analysis Any user starting
from the common CAF tree skims or private ones will access root trees
from SAM.

2 Generation of CAF Files

In the following we outline the generation procedure of CAF trees and the
requirements on the generation program.

2.1 Overview of tmb analyze

tmb analyze is the DØ package that provides the TMBAnalyze x executable.
It is currently used to generate TMBTrees. It’s internals are outlined in [2].

It basically consists of a set of subclasses of TMBMaker, each of which
is responsible for handling a specific D0 EDM chunk and transforming it
into a ROOT tree branch. Makers are registered by various DØ framework
packages which allows a modular design.

There are several short-comings of the current implementation of TMBAnalyze x.

• It doesn’t generate correct metadata for SAM.

• It allows only one output file specification. If a file grows too big,
ROOT will automatically open a new one, but without respecting the
original input file boundaries. This make it impossible to generate the
proper parentage information for SAM.

• It does not allow a selection of events based on tags. At the moment the
only selection possible is to filter events. This makes it impossible to
use the executable with the standard skimming package np tmb stream

and produce multiple TMBTree files in parallel with different selection
criteria.

4

2.2 Requirements

The above short-comings should be addressed on the time-scale of the project.
Especially, these are:

SAM Metadata The program should produce proper SAM metadata. It
should use the standard sam manager to do this. Application names
and versions should be registered with SAM, so users can select files
based on these criteria. The correct data tier (root-tree or root-tree-bygroup)
should be produced.

Multiple Output Streams The program should be able to create multiple
output files with different event selection criteria and without running
the TMBMaker code multiple times on the same event.

Multiple Output Files If the output for a given stream requires more than
one output file, it shall be possible to preserve input file boundaries (like
WriteEvent does).

Tagged Event Selection The program should be able to select events based
on tags, as produced by np tmb stream

For the SAM metadata we will use different applications versions for cen-
tral production and for other users/groups, to keep the output clearly sepa-
rated. An application family treemaker and an application name tmb analyze

as well as a data tier root-tree and root-tree-bygroup already exist.

3 Analysis Environment

3.1 Current Practice

Given the multitude of root based formats there is a wide variety of ways
people access the data for their analysis. We try to summarize them here,
with an emphasis on TMBTree and top tree.

Interactive ROOT Use Most tuple based formats can be simply opened
in ROOT and displayed with the TTree::Draw() method. This is also
true for object oriented ROOT formats, with the caveat that values
that are recalculated by methods are not available without the original
library.

5

MakeClass & friends MakeClass allows you to generate a simple analysis
program based on the content of a ROOT file. It works for tuple based
formats, but obviously cannot regenerate any methods for an object
based format. Newer versions likes MakeProxy and MakeProject are
able to regenerate most of the object structure, again without any user
defined methods.

Macros to recompile the TMBTree Library The tmb analyze package
contains ROOT macros to recompile all needed TMBTree classes into
a shared library that can be used with ROOT. This makes all the orig-
inal methods available to the user. Analysis code that uses this library
can also be compiled with ACLiC, the ROOT compilation system.

Custom Makefiles Various Makefiles are available that compile the TMB-
Tree classes into a ROOT shared library. It is often easy to extend the
Makefiles to add any user specific code.

top tree reader Packages like top tree reader provide a standardized way
to read top trees and loop over the events.

Frameworks Multiple groups (typically with many analyzers working to-
gether) created a framework where different users can plug in their
code in a standardized way. The framework usually takes care of read-
ing events and providing all the necessary libraries in a pre-compiled
form. Often it contains a well defined interface to access data (e.g. via
an Event class).

3.2 Requirements

We feel that there are different ways that people would like to access the data
in a CAF tree, depending on the situation. The CAF environment should
provide the tools to do this with minimal effort, without forcing the user to
use a full-fledged framework when all she wants to do is a having a quick
look at a few distributions.

On the other hand, users should not be required to re-invent their own
framework, if it is necessary to share code easily with others. Ideally, the
CAF environment consists of building blocks which can be used in an inter-
active environment as well as in a framework, and code written against these
interfaces will work in both.

6

3.3 Interactive Analysis

By interactive analysis we refer to the common task of opening a ROOT file
and quickly plotting some variables. The TTree::Draw() method of ROOT
is powerful enough to allow many common selections and allows the easy
creation of histograms, which can subsequently stored in a file.

Since the CAF format will not store all variables in the tree, but recalcu-
late them where possible, it requires the presence of a corresponding shared
library which contains all the methods. Creating this library is now done in
a multitude of ways.

3.3.1 Working in a D0 Release

The latest versions of the D0 release produce shared libraries in addition to
the usual static libraries. When working in a D0 release, one can therefore
directly use the shared library from the release.

> setup D0RunII p17.00.00

> root

root[0] .L $SRT_PUBLIC_CONTEXT/shlib/$SRT_SUBDIR/libmet_util.so

root[1] .L $SRT_PUBLIC_CONTEXT/shlib/$SRT_SUBDIR/libtmb_tree.so

The latest version of ROOT included in the p17 release also provides an
auto-loading feature that can be used to make the above steps transparent.
The following command creates a file in the current working directory that
tells ROOT where to find the shared libraries needed for a given class. When
using that class in the interpreter, ROOT will automatically load it.

> rlibmap -r .rootmap -l \

$SRT_PUBLIC_CONTEXT/shlib/$SRT_SUBDIR/libtmb_tree.so \

-d $SRT_PUBLIC_CONTEXT/shlib/$SRT_SUBDIR/libmet_util.so \

-c $SRT_PUBLIC_CONTEXT/tmb_tree/src/*_linkdef.h

> root

root[0] TMBMuon m;

The above will “just work” in the interpreter, without requiring the user
to do anything in addition.

7

3.3.2 Working outside a D0 Release

Some people prefer to have only the shared library for the TMB trees and
work with a ROOT version not coupled to any D0 release, e.g. on a laptop
or a machine where no D0 software is installed.

Either a common ROOT macro or a portable Makefile should be provided
centrally to build the shared library from scratch. This should not assume
the existence of any D0 software environment. Ideally it should

• Work with any ROOT version and take the compiler flags e.g. from
root-config.

• Work on the original package structure (i.e. will not require the user to
copy all header and source files to a different place)

• Work on any additional packages that the user writes in the same way.

3.4 Analysis Using the ROOT Infrastructure

ROOT provides the equivalent of an event loop, based on the TTree::Process()
method. It expects an object of type TSelector. Users typically derive from
that base class and implement methods which are called at the appropri-
ate time (beginning of processing, change of input tree, next event, end of
processing etc.).

Advantages of using TSelector are

• Works transparently with TTree and TChain.

• Works transparently with PROOF.

TChain will not work with SAM, since it requires the existence of all files
in the chain. There is no implementation of a SAMTree class with function-
ality similar to TChain for a SAM dataset.

Only a single TSelector can be passed to the TTree::Process() method.
Code written for this interface can therefore not be easily modularized (e.e.
how do you run two TSelector objects in sequence) except with an additional
level of indirection.

8

3.5 Root Framework

There are various ROOT based frameworks in existence in DØṠome are
widely used like d0root, others were developed and used by only a small
handful of users.

d0root has been initially developed to try to overcome the problem of
incompatible data formats. It does this by converting all the different inputs
into yet another internal data format.

Assuming that the CAF tree represents the common DØ ROOT format
for analysis, a common framework should build directly on this interface.
This avoids any additional conversion and copying that is unavoidable with
the d0root approach.

The following requirements and suggestions are taken from the DFWG
report, presentations in the DFWG meetings about existing frameworks and
internal discussions.

3.5.1 Event Class

The equivalent of the Event Data Model (EDM) in ROOT is based on the
notion of different branches in a TTree structure. A tree can contain an un-
limited number of branches, each with a different internal structure. This
makes the tree a flexible and extensible data structure. Access to a given
branch is achieved by passing the tree the address of an object of the appro-
priate type. For each event the TTree will fill the user object with the data
from the file.

For each branch the user has to know the correct type and its name. Once
the address is set, it has to be passed around to the user code (or retrieved
from the tree itself).

Almost all frameworks in use provide an Event object which centralizes
the access to the data. It is the Event object which is filled once and then
passed to the user code. Every user routine is just called with a reference to
the current event.

The code in the Event class is responsible for setting up the branches and
addresses for the various physics objects. It should provide the user with a
type-safe way of accessing all the common objects she needs for her analysis.
Whenever possible, this should happen with no additional copying taking
place.

Expert users might create CAF trees with non-standard content. Users

9

might calculate some derived quantities from the original CAF tree which
they want to store in ROOT files and access later. In both cases it should be
possible to access these data via the common Event class without changing
the Event class itself.

It is often desirable to calculate quantities in one place and then make
them available for later uses. The Event class should also serve as an inter-
mediate store for such data. This is to avoid the use of global variables. It
should be possible to store arbitrary data in the Event without the require-
ment to inherit from a base class etc. For example, it should be possible to
store a single integer value without much additional overhead.

3.5.2 Root Packages

The framework should provide the equivalent of a simplified DØ package in
ROOT. Each package should do one simple thing and the framework should
put them together in a user defined way.

ROOT packages should be much simpler to write and develep than frame-
work packages. For example, it should be possible to use a simple function
as a framework package. Instead of providing an unlimited number of hooks
and interfaces, the ROOT framework should restrict itself to the most needed
tasks: information about beginning and end of processing, change of input
files, and a process hook. The process hook can return a boolean indicating
if this event should be further processed, combining both the processEvent

and filterEvent interface of the DØ framework.
With the existence of shared libraries in the standard DØ release, the

framework should make best use of them. For example, if packages follow
a well-defined structure, it is possible to load them at run-time without ex-
plicit linking at compile time. This should speed up the developement time
and require the existence of only a single executable (and not one for each
analysis).

ROOT packages should not be concerned with issues related to input of
event data. It should be transparent if the data comes from a single file, a list
of files, from SAM etc. However, there should be a mechanism to allow for
partial reading of events. This has been shown to speed up I/O remarkedly.

10

3.5.3 Configuration Mechanism

A simple mechanism should be provided to configure the ROOT packages.
Code for this packages should be parameterized via the configuration mech-
anism instead of hard coding values.

ROOT uses a simple file syntax (see the TEnv class) for its own config-
uration files. This provides lookup of name/value pairs. Parameters of an
analysis are expected to change over time and not be constant. The use of a
database oriented approach like RCP seems therefore not appropriate. Using
the ROOT based file syntax allows immediate access to these configuration
files without much additional coding effort.

3.6 SAM Interface

The ROOT framework should hide all details concerning the input of event
data. Especially, it should be transparent if the files are sitting on a local or
if they are delivered by SAM.

The sam client api package allows access to SAM from ROOT. It has
been tested on CAB and ClueDØ both with single and parallel jobs. It
expects that the SAM project is setup outside of the library, however, this is
usually the case with parallel jobs anyway.

3.7 Batch Framework

Naturally, only executables that have been built inside the DØ framework
should be expected to run in the batch system. Since these are similar to a
standard DØ framework executable, d0tools should be adapted to handle
any differences which remain.

3.8 Root Build System

With the latest p17 release, the (still optional) use of shared libraries has
sped up the turn-around time for developing DØ code. We therefore suggest
to do all normal developement inside the usual DØ release structure.

The following optimizations have been suggested:

• Have a special analysis release that contains only the few packages
relevant for a ROOT based analysis. This mainly speeds up the linking
process which is now often the most time-consuming part. The reason

11

for this is that the linker will search through a symbol database of
all libraries in the DØ release. Reducing the number of packages will
make this step shorter. However, with the use of run-time loading, the
linking step might be mostly obsolete.

• Have a stand-alone build system which can be used outside the DØ
environment. This would be either based on the built-in ROOT ACLiC
system, or custom Makefiles.

4 Documentation System

References

[1] D0 Note 4473, Report of the DØ Data Format Working Group.

[2] D0 Note xxxx, Recommendations Regarding Common Analysis Format
Content.

12

